函数的语法
Last updated
Last updated
本章讲的就是 Haskell 那套独特的语法结构,先从模式匹配开始。模式匹配通过检查数据的特定结构来检查其是否匹配,并按模式从中取得数据。
在定义函数时,你可以为不同的模式分别定义函数本身,这就让代码更加简洁易读。你可以匹配一切数据型别 --- 数字,字符,List,元组,等等。我们弄个简单函数,让它检查我们传给它的数字是不是 7。
在调用 lucky
时,模式会从上至下进行检查,一旦有匹配,那对应的函数体就被应用了。这个模式中的唯一匹配是参数为 7,如果不是 7,就转到下一个模式,它匹配一切数值并将其绑定为 x
。这个函数完全可以使用 if
实现,不过我们若要个分辨 1 到 5 中的数字,而无视其它数的函数该怎么办?要是没有模式匹配的话,那可得好大一棵 if-else
树了!
注意下,如果我们把最后匹配一切的那个模式挪到最前,它的结果就全都是 "Not between 1 and 5"
了。因为它自己匹配了一切数字,不给后面的模式留机会。
记得前面实现的那个阶乘函数么?当时是把 n
的阶乘定义成了 product [1..n]
。也可以写出像数学那样的递归实现,先说明 0 的阶乘是 1 ,再说明每个正整数的阶乘都是这个数与它前驱 (predecessor) 对应的阶乘的积。如下便是翻译到 Haskell 的样子:
这就是我们定义的第一个递归函数。递归在 Haskell 中十分重要,我们会在后面深入理解。如果拿一个数(如 3)调用 factorial
函数,这就是接下来的计算步骤:先计算 3*factorial 2
,factorial 2
等于 2*factorial 1
,也就是 3*(2*(factorial 1))
。factorial 1
等于 1*factorial 0
,好,得 3*(2*(1*factorial 0))
,递归在这里到头了,嗯 --- 我们在万能匹配前面有定义,0 的阶乘是 1。于是最终的结果等于 3*(2*(1*1))
。若是把第二个模式放在前面,它就会捕获包括 0 在内的一切数字,这一来我们的计算就永远都不会停止了。这便是为什么说模式的顺序是如此重要:它总是优先匹配最符合的那个,最后才是那个万能的。
模式匹配也会失败。假如这个函数:
拿个它没有考虑到的字符去调用它,你就会看到这个:
它告诉我们说,这个模式不够全面。因此,在定义模式时,一定要留一个万能匹配的模式,这样我们的进程就不会为了不可预料的输入而崩溃了。
对 Tuple 同样可以使用模式匹配。写个函数,将二维空间中的矢量相加该如何?将它们的 x
项和 y
项分别相加就是了。如果不了解模式匹配,我们很可能会写出这样的代码:
嗯,可以运行。但有更好的方法,上模式匹配:
there we go!好多了!注意,它已经是个万能的匹配了。两个 addVector
的型别都是 addVectors:: (Num a) => (a,a) -> (a,a) -> (a,a)
,我们就能够保证,两个参数都是序对 (Pair) 了。
fst
和 snd
可以从序对中取出元素。三元组 (Tripple) 呢?嗯,没现成的函数,得自己动手:
这里的 _
就和 List Comprehension 中一样。表示我们不关心这部分的具体内容。
说到 List Comprehension,我想起来在 List Comprehension 中也能用模式匹配:
一旦模式匹配失败,它就简单挪到下个元素。
对 List 本身也可以使用模式匹配。你可以用 []
或 :
来匹配它。因为 [1,2,3]
本质就是 1:2:3:[]
的语法糖。你也可以使用前一种形式,像 x:xs
这样的模式可以将 List 的头部绑定为 x
,尾部绑定为 xs
。如果这 List 只有一个元素,那么 xs
就是一个空 List。
如果你要把 List 的前三个元素都绑定到变量中,可以使用类似 x:y:z:xs
这样的形式。它只能匹配长度大于等于 3 的 List。
我们已经知道了对 List 做模式匹配的方法,就实现个我们自己的 head
函数。
看看管不管用:
漂亮!注意下,你若要绑定多个变量(用 _
也是如此),我们必须用括号将其括起。同时注意下我们用的这个 error
函数,它可以生成一个运行时错误,用参数中的字串表示对错误的描述。它会直接导致进程崩溃,因此应谨慎使用。可是对一个空 List 取 head
真的不靠谱哇。
弄个简单函数,让它用非标准的英语给我们展示 List 的前几项。
这个函数顾及了空 List,单元素 List,双元素 List 以及较长的 List,所以这个函数很安全。(x:[])
与 (x:y:[])
也可以写作 [x]
和 [x,y]
(有了语法糖,我们不必多加括号)。不过 (x:y:_)
这样的模式就不行了,因为它匹配的 List 长度不固定。
我们曾用 List Comprehension 实现过自己的 length
函数,现在用模式匹配和递归重新实现它:
这与先前写的那个 factorial
函数很相似。先定义好未知输入的结果 --- 空 List,这也叫作边界条件。再在第二个模式中将这 List 分割为头部和尾部。说,List 的长度就是其尾部的长度加 1。匹配头部用的 _
,因为我们并不关心它的值。同时也应明确,我们顾及了 List 所有可能的模式:第一个模式匹配空 List,第二个匹配任意的非空 List。
看下拿 "ham"
调用 length'
会怎样。首先它会检查它是否为空 List。显然不是,于是进入下一模式。它匹配了第二个模式,把它分割为头部和尾部并无视掉头部的值,得长度就是 1+length' "am"
。ok。以此类推,"am"
的 length
就是 1+length' "m"
。好,现在我们有了 1+(1+length' "m")
。length' "m"
即 1+length ""
(也就是 1+length' []
)。根据定义,length' []
等于 0
。最后得 1+(1+(1+0))
。
再实现 sum
。我们知道空 List 的和是 0,就把它定义为一个模式。我们也知道一个 List 的和就是头部加上尾部的和的和。写下来就成了:
还有个东西叫做 as
模式,就是将一个名字和 @
置于模式前,可以在按模式分割什么东西时仍保留对其整体的引用。如这个模式 xs@(x:y:ys)
,它会匹配出与 x:y:ys
对应的东西,同时你也可以方便地通过 xs
得到整个 List,而不必在函数体中重复 x:y:ys
。看下这个 quick and dirty 的例子:
我们使用 as
模式通常就是为了在较大的模式中保留对整体的引用,从而减少重复性的工作。
还有——你不可以在模式匹配中使用 ++
。若有个模式是 (xs++ys)
,那么这个 List 该从什么地方分开呢?不靠谱吧。而 (xs++[x,y,z])
或只一个 (xs++[x])
或许还能说的过去,不过出于 List 的本质,这样写也是不可以的。
模式用来检查一个值是否合适并从中取值,而 guard 则用来检查一个值的某项属性是否为真。咋一听有点像是 if
语句,实际上也正是如此。不过处理多个条件分支时 guard 的可读性要高些,并且与模式匹配契合的很好。
在讲解它的语法前,我们先看一个用到 guard 的函数。它会依据你的 BMI 值 (body mass index,身体质量指数)来不同程度地侮辱你。BMI 值即为体重除以身高的平方。如果小于 18.5,就是太瘦;如果在 18.5 到 25 之间,就是正常;25 到 30 之间,超重;如果超过 30,肥胖。这就是那个函数(我们目前暂不为您计算 BMI,它只是直接取一个 BMI 值)。
guard 由跟在函数名及参数后面的竖线标志,通常他们都是靠右一个缩进排成一列。一个 guard 就是一个布尔表达式,如果为真,就使用其对应的函数体。如果为假,就送去见下一个 guard,如之继续。如果我们用 24.3 调用这个函数,它就会先检查它是否小于等于 18.5,显然不是,于是见下一个 guard。24.3 小于 25.0,因此通过了第二个 guard 的检查,就返回第二个字串。
在这里则是相当的简洁,不过不难想象这在命令式语言中又会是怎样的一棵 if-else 树。由于 if-else 的大树比较杂乱,若是出现问题会很难发现,guard 对此则十分清楚。
最后的那个 guard 往往都是 otherwise
,它的定义就是简单一个 otherwise = True
,捕获一切。这与模式很相像,只是模式检查的是匹配,而它们检查的是布尔表达式 。如果一个函数的所有 guard 都没有通过(而且没有提供 otherwise
作万能匹配),就转入下一模式。这便是 guard 与模式契合的地方。如果始终没有找到合适的 guard 或模式,就会发生一个错误。
当然,guard 可以在含有任意数量参数的函数中使用。省得用户在使用这函数之前每次都自己计算 bmi
。我们修改下这个函数,让它取身高体重为我们计算。
你可以测试自己胖不胖。
运行的结果是我不太胖。不过程序却说我很丑。
要注意一点,函数的名字和参数的后面并没有 =
。许多初学者会造成语法错误,就是因为在后面加上了 =
。
另一个简单的例子:写个自己的 max
函数。应该还记得,它是取两个可比较的值,返回较大的那个。
guard 也可以塞在一行里面。但这样会丧失可读性,因此是不被鼓励的。即使是较短的函数也是如此,不过出于展示,我们可以这样重写 max'
:
这样的写法根本一点都不容易读。
我们再来试试用 guard 实现我们自己的 compare
函数:
前一节中我们写了这个 bmi
计算函数:
注意,我们重复了 3 次。我们重复了 3 次。程序员的字典里不应该有"重复"这个词。既然发现有重复,那么给它一个名字来代替这三个表达式会更好些。嗯,我们可以这样修改:
我们的 where
关键字跟在 guard 后面(最好是与竖线缩进一致),可以定义多个名字和函数。这些名字对每个 guard 都是可见的,这一来就避免了重复。如果我们打算换种方式计算 bmi
,只需进行一次修改就行了。通过命名,我们提升了代码的可读性,并且由于 bmi
只计算了一次,函数的执行效率也有所提升。我们可以再做下修改:
函数在 where
绑定中定义的名字只对本函数可见,因此我们不必担心它会污染其他函数的命名空间。注意,其中的名字都是一列垂直排开,如果不这样规范,Haskell 就搞不清楚它们在哪个地方了。
where
绑定不会在多个模式中共享。如果你在一个函数的多个模式中重复用到同一名字,就应该把它置于全局定义之中。
where
绑定也可以使用模式匹配!前面那段代码可以改成:
我们再搞个简单函数,让它告诉我们姓名的首字母:
我们完全按可以在函数的参数上直接使用模式匹配(这样更短更简洁),在这里只是为了演示在 where
语句中同样可以使用模式匹配:
where
绑定可以定义名字,也可以定义函数。保持健康的编程语言风格,我们搞个计算一组 bmi
的函数:
这就全了!在这里将 bmi
搞成一个函数,是因为我们不能依据参数直接进行计算,而必须先从传入函数的 List 中取出每个序对并计算对应的值。
where
绑定还可以一层套一层地来使用。 有个常见的写法是,在定义一个函数的时候也写几个辅助函数摆在 where
绑定中。 而每个辅助函数也可以透过 where
拥有各自的辅助函数。
let
绑定与 where
绑定很相似。where
绑定是在函数底部定义名字,对包括所有 guard 在内的整个函数可见。let
绑定则是个表达式,允许你在任何位置定义局部变量,而对不同的 guard 不可见。正如 Haskell 中所有赋值结构一样,let
绑定也可以使用模式匹配。看下它的实际应用!这是个依据半径和高度求圆柱体表面积的函数:
let
的格式为 let [bindings] in [expressions]
。在 let
中绑定的名字仅对 in
部分可见。let
里面定义的名字也得对齐到一列。不难看出,这用 where
绑定也可以做到。那么它俩有什么区别呢?看起来无非就是,let
把绑定放在语句前面而 where
放在后面嘛。
不同之处在于,let
绑定本身是个表达式,而 where
绑定则是个语法结构。还记得前面我们讲if语句时提到它是个表达式,因而可以随处安放?
用 let
绑定也可以实现:
let
也可以定义局部函数:
若要在一行中绑定多个名字,再将它们排成一列显然是不可以的。不过可以用分号将其分开。
最后那个绑定后面的分号不是必须的,不过加上也没关系。如我们前面所说,你可以在 let
绑定中使用模式匹配。这在从 Tuple 取值之类的操作中很方便。
你也可以把 let
绑定放到 List Comprehension 中。我们重写下那个计算 bmi
值的函数,用个 let
替换掉原先的 where
。
List Comprehension 中 let
绑定的样子和限制条件差不多,只不过它做的不是过滤,而是绑定名字。let
中绑定的名字在输出函数及限制条件中都可见。这一来我们就可以让我们的函数只返回胖子的 bmi
值:
在 (w, h) <- xs
这里无法使用 bmi
这名字,因为它在 let
绑定的前面。
在 List Comprehension 中我们忽略了 let
绑定的 in
部分,因为名字的可见性已经预先定义好了。不过,把一个 let...in
放到限制条件中也是可以的,这样名字只对这个限制条件可见。在 ghci 中 in
部分也可以省略,名字的定义就在整个交互中可见。
你说既然 let
已经这么好了,还要 where
干嘛呢?嗯,let
是个表达式,定义域限制的相当小,因此不能在多个 guard 中使用。一些朋友更喜欢 where
,因为它是跟在函数体后面,把主函数体距离型别声明近一些会更易读。
有命令式编程语言 (C, C++, Java, etc.) 的经验的同学一定会有所了解,很多命令式语言都提供了 case
语句。就是取一个变量,按照对变量的判断选择对应的代码块。其中可能会存在一个万能匹配以处理未预料的情况。
Haskell 取了这一概念融合其中。如其名,case
表达式就是,嗯,一种表达式。跟 if..else
和 let
一样的表达式。用它可以对变量的不同情况分别求值,还可以使用模式匹配。Hmm,取一个变量,对它模式匹配,执行对应的代码块。好像在哪儿听过?啊,就是函数定义时参数的模式匹配!好吧,模式匹配本质上不过就是 case
语句的语法糖而已。这两段代码就是完全等价的:
看得出,case表达式的语法十分简单:
expression 匹配合适的模式。 一如预期地,第一个模式若匹配,就执行第一个区块的代码;否则就接下去比对下一个模式。如果到最后依然没有匹配的模式,就会产生运行时错误。
函数参数的模式匹配只能在定义函数时使用,而 case
表达式可以用在任何地方。例如:
这在表达式中作模式匹配很方便,由于模式匹配本质上就是 case
表达式的语法糖,那么写成这样也是等价的: